A partially adaptive estimator for the censored regression model based on a mixture of normal distributions
نویسنده
چکیده
The goal of this paper is to introduce a partially adaptive estimator for the censored regression model based on an error structure described by a mixture of two normal distributions. The model we introduce is easily estimated by maximum likelihood using the EM algorithm adapted from the work of Bartolucci and Scaccia (2004). A Monte Carlo study is conducted to examine the small sample properties of this estimator compared to some common alternatives for the estimation of a censored regression model such as the usual tobit model and the CLAD estimator of Powell (1984). Our partially adaptive estimator performed well. The partially adaptive estimator is applied to the Mroz (1987) data on wife’s hours worked. The empirical evidence supports the partially adaptive estimator over the usual tobit model. Keywords; partially adaptive estimator, censored regression model JEL: C240
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملModel Selection Based on Tracking Interval Under Unified Hybrid Censored Samples
The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...
متن کاملBayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution
In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Methods and Applications
دوره 21 شماره
صفحات -
تاریخ انتشار 2012